Memory complexity for winning games on graphs

Patricia Bouyer

Laboratoire Méthodes Formelles
Université Paris-Saclay, CNRS, ENS Paris-Saclay
France

Based on joined work with Stéphane Le Roux, Youssouf Oualhadj,

Motivation

The setting

My field of research: Formal methods

Give guarantees (+ certificates) on functionalities or performances

Model-checking

System

Model-checking

System

Properties

Model-checking

System

Properties

Model-checking

System

Model-checking

System

Model-checking

System

Properties

\sqrt{b}

$\sqrt{ } \sqrt{ }$

$$
\varphi=\mathbf{A} \mathbf{G} \neg \operatorname{crash} \wedge\left(\mathbb{P}\left(\mathbf{F}_{\leq 2 h a r r}\right) \geq 0,9\right)
$$

Model-checking

System

\sqrt{b}
Properties

\sqrt{b}

Model-checking

System

\sqrt{b}

Properties

\sqrt{b}

Control or synthesis

System

Properties

The talk in one slide

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

The talk in one slide

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

The talk in one slide

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Simple?

Minimal information for deciding the next steps

The talk in one slide

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Simple?

Minimal information for deciding the next steps

When are simple strategies sufficient to play optimally?

Our general approach

```
[Tho95] On the synthesis of strategies in infinite games (STACS'95)
[Tho02] Thomas. Infinite games and verification (CAV'02)
[GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives
    in Games and Interactions, 2008)
[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).
```


Our general approach

- Use graph-based game models (state machines) to represent the system and its evolution

```
[Tho95] On the synthesis of strategies in infinite games (STACS'95)
[Tho02] Thomas. Infinite games and verification (CAV'02)
[GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives
    in Games and Interactions, 2008)
[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking)
```


Our general approach

- Use graph-based game models (state machines) to represent the system and its evolution
- Use game theory concepts to express admissible situations
- Winning strategies
- (Pareto-)Optimal strategies
- Nash equilibria
- Subgame-perfect equilibria

```
[Tho95] On the synthesis of strategies in infinite games (STACS'95)
[Tho02] Thomas. Infinite games and verification (CAV'02)
[GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives
    in Games and Interactions, 2008)
[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking)
```


Games What they often are

Games A broader sense

Goal
Interaction

- Model and analyze (using math. tools) situations of interactive decision making

Games A broader sense

Goal

- Model and analyze (using math. tools) situations of interactive decision making

Ingredients

- Several decision makers (players)
- Possibly each with different goals
- The decision of each player impacts the outcome of all

Games A broader sense

Goal

Ingredients

- Model and analyze (using math. tools) situations of interactive
- Several decision makers (players) decision making
- Possibly each with different goals
- The decision of each player impacts the outcome of all

Wide range of applicability

«[...] it is a context-free mathematical toolbox. »

- Social science: e.g. social choice theory
- Theoretical economics: e.g. models of markets, auctions
- Political science: e.g. fair division
- Biology: e.g. evolutionary biology
- ...

Games A broader sense

Goal

Ingredients

- Model and analyze (using math. tools) situations of interactive decision making
- Several decision makers (players)
- Possibly each with different goals
- The decision of each player impacts the outcome of all

Wide range of applicability

«[...] it is a context-free mathematical toolbox. »

- Social science: e.g. social choice theory
- Theoretical economics: e.g. models of markets, auctions
- Political science: e.g. fair division
- Biology: e.g. evolutionary biology
+ Computer science
- ...

Games on graphs

Games on graphs

Games on graphs

1. P_{1} chooses the edge $\left(s_{0}, s_{1}\right)$

Games on graphs

1. P_{1} chooses the edge $\left(s_{0}, s_{1}\right)$
2. P_{2} chooses the edge $\left(s_{1}, s_{4}\right)$

Games on graphs

1. P_{1} chooses the edge $\left(s_{0}, s_{1}\right)$
2. P_{2} chooses the edge $\left(s_{1}, s_{4}\right)$
3. P_{2} chooses the edge $\left(s_{4}, s_{2}\right)$

Games on graphs

1. P_{1} chooses the edge $\left(s_{0}, s_{1}\right)$
2. P_{2} chooses the edge $\left(s_{1}, s_{4}\right)$
3. P_{2} chooses the edge $\left(s_{4}, s_{2}\right)$
4. P_{1} chooses the edge $\left(s_{2}, \odot\right)$

Games on graphs

1. P_{1} chooses the edge $\left(s_{0}, s_{1}\right)$
2. P_{2} chooses the edge $\left(s_{1}, s_{4}\right)$
3. P_{2} chooses the edge $\left(s_{4}, s_{2}\right)$
4. P_{1} chooses the edge $\left(s_{2}, \odot\right)$

Games on graphs

1. P_{1} chooses the edge $\left(s_{0}, s_{1}\right)$
2. P_{2} chooses the edge $\left(s_{1}, s_{4}\right)$
3. P_{2} chooses the edge $\left(s_{4}, s_{2}\right)$

Players use strategies to play.
A strategy for P_{i} is $\sigma_{i}: S^{*} S_{i} \rightarrow E$
4. P_{1} chooses the edge $\left(s_{2}, \because\right)$

Objectives for the players

$$
\begin{aligned}
& C=\{a, b\} \\
& E \subseteq S \times C \times S
\end{aligned}
$$

Objectives for the players

$$
\begin{aligned}
& C=\{a, b\} \\
& E \subseteq S \times C \times S
\end{aligned}
$$

- Winning objective for $P_{i}: W_{i} \subseteq C^{\omega}$, e.g. $W_{1}=C^{*} \cdot b \cdot C^{\omega}$

Objectives for the players

$$
\begin{aligned}
& C=\{a, b\} \\
& E \subseteq S \times C \times S
\end{aligned}
$$

- Winning objective for $P_{i}: W_{i} \subseteq C^{\omega}$, e.g. $W_{1}=C^{*} \cdot b \cdot C^{\omega}$
- Payoff function: $p_{i}: C^{\omega} \rightarrow \mathbb{R}$, e.g. mean-payoff

Objectives for the players

$$
\begin{aligned}
& C=\{a, b\} \\
& E \subseteq S \times C \times S
\end{aligned}
$$

- Winning objective for $P_{i}: W_{i} \subseteq C^{\omega}$, e.g. $W_{1}=C^{*} \cdot b \cdot C^{\omega}$
- Payoff function: $p_{i}: C^{\omega} \rightarrow \mathbb{R}$, e.g. mean-payoff
- Preference relation: $\sqsubseteq_{i} \subseteq C^{\omega} \times C^{\omega}$ (total preorder)

Objectives for the players

Zero-sum hypothesis

$$
\begin{aligned}
& C=\{a, b\} \\
& E \subseteq S \times C \times S
\end{aligned}
$$

- Winning objective for $P_{i}: W_{i} \subseteq C^{\omega}$, e.g. $W_{1}=C^{*} \cdot b \cdot C^{\omega}$

$$
W_{2}=W_{1}^{c}
$$

- Payoff function: $p_{i}: C^{\omega} \rightarrow \mathbb{R}$, e.g. mean-payoff

$$
p_{1}+p_{2}=0
$$

- Preference relation: $\sqsubseteq_{i} \subseteq C^{\omega} \times C^{\omega}$

$$
\sqsubseteq_{2}=\sqsubseteq_{1}^{-1}
$$

What does it mean to win a game?

What does it mean to win a game?

- Play $\rho=s_{0} s_{1} s_{2} \ldots$ is compatible with σ_{i} whenever $s_{j} \in S_{i}$ implies $\left(s_{j}, s_{j+1}\right)=\sigma_{i}\left(s_{0} s_{1} \ldots s_{j}\right)$. We write $\operatorname{Out}\left(\sigma_{i}\right)$.

Outcomes of a strategy

Outcomes of a strategy

- Strategy σ

Outcomes of a strategy

- Strategy σ
- Out (σ) has two plays, which are both winning

Outcomes of a strategy

Outcomes of a strategy

- Strategy σ

Outcomes of a strategy

What does it mean to win a game?

- Play $\rho=s_{0} s_{1} s_{2} \ldots$ is compatible with σ_{i} whenever $s_{j} \in S_{i}$ implies $\left(s_{j}, s_{j+1}\right)=\sigma_{i}\left(s_{0} s_{1} \ldots s_{j}\right)$. We write $\operatorname{Out}\left(\sigma_{i}\right)$.
- σ_{i} is winning if all plays compatible with σ_{i} belong to W_{i}

What does it mean to win a game?

- Play $\rho=s_{0} s_{1} s_{2} \ldots$ is compatible with σ_{i} whenever $s_{j} \in S_{i}$ implies $\left(s_{j}, s_{j+1}\right)=\sigma_{i}\left(s_{0} s_{1} \ldots s_{j}\right)$. We write $\operatorname{Out}\left(\sigma_{i}\right)$.
- σ_{i} is winning if all plays compatible with σ_{i} belong to W_{i}

Martin's determinacy theorem

Turn-based zero-sum games are determined for Borel winning objectives: in every game, either P_{1} or P_{2} has a winning strategy.

Optimality of strategies

Optimality of strategies

$\operatorname{Out}\left(\sigma_{1}\right)\{$

Optimality of strategies

Optimality of strategies

Optimality of strategies

- σ_{1} is better than σ_{1}^{\prime} whenever $\operatorname{Out}\left(\sigma_{1}\right)^{\uparrow} \subseteq$ Out $\left(\sigma_{1}^{\prime}\right)^{\uparrow}$
- σ_{1} is optimal whenever it is better than any other σ_{1}^{\prime}

Optimality of strategies

- σ_{1} is better than σ_{1}^{\prime} whenever $\operatorname{Out}\left(\sigma_{1}\right)^{\uparrow} \subseteq \operatorname{Out}\left(\sigma_{1}^{\prime}\right)^{\uparrow}$
- σ_{1} is optimal whenever it is better than any other σ_{1}^{\prime}

Remark

- Optimal strategies might not exist
- If \sqsubseteq given by a payoff function, notion of ε-optimal strategies
- Optimality vs subgame-optimality

Relevant questions

$\varphi=\operatorname{Reach}(*)$

Relevant questions

$$
\varphi=\operatorname{Reach}(:)
$$

- Can P_{1} win the game, i.e. does P_{1} have a winning strategy? Can P_{1} play optimally?

Relevant questions

$$
\varphi=\operatorname{Reach}(:)
$$

- Can P_{1} win the game, i.e. does P_{1} have a winning strategy? Can P_{1} play optimally?
- Is there an effective (efficient) way of winning?

Relevant questions

$$
\varphi=\operatorname{Reach}(:)
$$

- Can P_{1} win the game, i.e. does P_{1} have a winning strategy? Can P_{1} play optimally?
- Is there an effective (efficient) way of winning?
- How complex is it to win?

Example: the Nim game

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_{1} starts

Example: the Nim game

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_{1} starts

Example: the Nim game

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_{1} starts

Example: the Nim game

P_{1} wins

$$
\begin{aligned}
& \text { - from all } \bigcirc \equiv 1 \text { or } 2 \bmod 3 \\
& \text { from all } \square \equiv 0 \bmod 3
\end{aligned}
$$

Example: the Nim game

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_{1} starts

P_{1} wins
P_{2} wins
- from all $\bigcirc \equiv 1$ or $2 \bmod 3$
from all $\square \equiv 0 \bmod 3$
- from all $\bigcirc \equiv 0 \bmod 3$
- fromall $\square \equiv 1$ or $2 \bmod 3$

Computation of winning states in the running example

Computation of winning states in the running example

Computation of winning states in the running example

Computation of winning states in the running example

Computation of winning states in the running example

Computation of winning states in the running example

All states are winning for P_{1}

Computation of winning states in the running example

One state is not winning for P_{1} It is winning for P_{2}

Chess game

Chess game

Zermelo's Theorem

From every position, either White can force a win, or Black can force a win, or both sides can force at least a draw.

```
[Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress
    Mathematicians, 1912)

\section*{Chess game}

\section*{Zermelo's Theorem}

From every position, either White can force a win, or Black can force a win, or both sides can force at least a draw.
- We don't know what is the case for the initial position, and no winning strategy (for either of the players) is known
```

[Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress
Mathematicians, 1912)

Chess game

Zermelo's Theorem

From every position, either White can force a win, or Black can force a win, or both sides can force at least a draw.

- We don't know what is the case for the initial position, and no winning strategy (for either of the players) is known
- According to Claude Shannon, there are 10^{43} legit positions in chess

```
[Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress
    Mathematicians, 1912)

\section*{Hex game}


\section*{Hex game}


\section*{Solving the Hex game}

First player has always a winning strategy.

\section*{Hex game}


\section*{Solving the Hex game}

First player has always a winning strategy.
- Determinacy results (no tie is possible) + strategy stealing argument

\section*{Hex game}


\section*{Solving the Hex game}

First player has always a winning strategy.
- Determinacy results (no tie is possible) + strategy stealing argument
- A winning strategy is not known yet.

\section*{What we do not consider}
- Concurrent games
- Stochastic games and strategies
- Partial information
- Values
- Determinacy of Blackwell games

\section*{Families of strategies}

\section*{Families of strategies}


\section*{General strategies}
\[
\sigma_{i}: S^{*} S_{i} \rightarrow E
\]
- May use any information of the past execution
- Information used is therefore potentially infinite
- Not adequate if one targets implementation

\section*{On the simplest side: positional strategies}

From \(\sigma_{i}: S^{*} S_{i} \rightarrow E\) to \(\sigma_{i}: S_{i} \rightarrow E\)

\section*{On the simplest side: positional strategies}

From \(\sigma_{i}: S^{*} S_{i} \rightarrow E\) to \(\sigma_{i}: S_{i} \rightarrow E\)
- Positional = memoryless

\section*{On the simplest side: positional strategies}

From \(\sigma_{i}: S^{*} S_{i} \rightarrow E\) to \(\sigma_{i}: S_{i} \rightarrow E\)
- Positional = memoryless
- Reachability, parity, mean-payoff, positive energy, ... \(\rightarrow\) positional strategies are sufficient to win

\section*{On the simplest side: positional strategies}

From \(\sigma_{i}: S^{*} S_{i} \rightarrow E\) to \(\sigma_{i}: S_{i} \rightarrow E\)
- Positional = memoryless
- Reachability, parity, mean-payoff, positive energy, ... \(\rightarrow\) positional strategies are sufficient to win


\section*{Example: mean-payoff}


\section*{Example: mean-payoff}
- \(P_{1}\) maximizes, \(P_{2}\) minimizes
\[
\overline{\mathrm{MP}}=\limsup _{n} \frac{\sum_{i \neq n} c_{i}}{n}
\]


\section*{Example: mean-payoff}
- \(P_{1}\) maximizes, \(P_{2}\) minimizes
- Positional strategies are sufficient to win
\[
\overline{\mathrm{MP}}=\limsup _{n} \frac{\sum_{i \neq n} c_{i}}{n}
\]


Do we need more?

\section*{Examples}

«See infinitely often both \(a\) and \(b\) »
Büchi( \(a\) ) ^ Büchi(b)

\section*{Examples}

«See infinitely often both \(a\) and \(b\) »
\[
\text { Büchi }(a) \wedge \text { Büchi }(b)
\]

\section*{Winning strategy}
- At each visit to \(s_{1}\), loop once in \(s_{1}\) and then go to \(s_{2}\)
- At each visit to \(s_{2}\), loop once in \(s_{2}\) and then go to \(s_{1}\)
- Generates the sequence \((a c b c)^{\omega}\)

\section*{Examples}

«See infinitely often both \(a\) and \(b\) » Büchi \((a) \wedge\) Büchi \((b)\)

«Reach the target with energy level 0 »
\[
\mathbf{F G}(E L=0)
\]

\section*{Winning strategy}
- At each visit to \(s_{1}\), loop once in \(s_{1}\) and then go to \(s_{2}\)
- At each visit to \(s_{2}\), loop once in \(s_{2}\) and then go to \(s_{1}\)
- Generates the sequence \((a c b c)^{\omega}\)

\section*{Examples}

«See infinitely often both \(a\) and \(b\) » Büchi \((a) \wedge\) Büchi \((b)\)

\section*{Winning strategy}
- At each visit to \(s_{1}\), loop once in \(s_{1}\) and then go to \(s_{2}\)
- At each visit to \(s_{2}\), loop once in \(s_{2}\) and then go to \(s_{1}\)
- Generates the sequence \((a c b c)^{\omega}\)

«Reach the target with energy level 0 »
\[
\mathbf{F G}(E L=0)
\]

\section*{Winning strategy}
- Loop five times in \(s_{0}\)
- Then go to the target
- Generates the sequence of colors \(11111-5000\)...

\section*{Examples}

«See infinitely often both \(a\) and \(b\) » Büchi \((a) \wedge\) Büchi \((b)\)

\section*{Winning strategy}
- At each visit to \(s_{1}\), loop once in \(s_{1}\) and then go to \(s_{2}\)
- At each visit to \(s_{2}\), loop once in \(s_{2}\) and then go to \(s_{1}\)
- Generates the sequence \((a c b c)^{\omega}\)

«Reach the target with energy level 0 » FG \((E L=0)\)

\section*{Winning strategy}
- Loop five times in \(s_{0}\)
- Then go to the target
- Generates the sequence of colors \(11111-5000\)...

\section*{These two strategies require only finite memory}

\section*{Example: multi-dimensional mean-payoff}


\author{
«Have a (limsup) mean-payoff \(\geq 0\) on both dimensions » \\ So-called multi-dimensional mean-payoff
}

\section*{Example: multi-dimensional mean-payoff}

\section*{\((+1,-1)\)}

«Have a (limsup) mean-payoff \(\geq 0\) on both dimensions »
So-called multi-dimensional mean-payoff

\section*{Winning strategy}
- After \(k\)-th switch between \(s_{1}\) and \(s_{2}\), loop \(2 k-1\) times and then switch back
- Generates the sequence
\((-1,-1)(-1,+1)(-1,-1)(+1,-1)(+1,-1)(+1,-1)(-1,-1)\)
\((-1,+1)(-1,+1)(-1,+1)(-1,+1)(-1,+1)(-1,-1)\)
\((+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(-1,-1) \ldots\)

\section*{Example: multi-dimensional mean-payoff}

«Have a (limsup) mean-payoff \(\geq 0\) on both dimensions »
So-called multi-dimensional mean-payoff

\section*{Winning strategy}
- After \(k\)-th switch between \(s_{1}\) and \(s_{2}\), loop \(2 k-1\) times and then switch back
- Generates the sequence
\[
\begin{aligned}
& (-1,-1)(-1,+1)(-1,-1)(+1,-1)(+1,-1)(+1,-1)(-1,-1) \\
& (-1,+1)(-1,+1)(-1,+1)(-1,+1)(-1,+1)(-1,-1) \\
& (+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(-1,-1) \ldots
\end{aligned}
\]

\section*{This strategy requires infinite memory, and this is unavoidable}

\section*{We focus on finite memory!}

\section*{Chromatic* memory}

Memory skeleton
\[
\mathscr{M}=\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right) \text { with } m_{\text {init }} \in M \text { and } \alpha_{\text {upd }}: M \times C \rightarrow M
\]


\section*{Chromatic* memory}

Memory skeleton
\[
\mathscr{M}=\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right) \text { with } m_{\text {init }} \in M \text { and } \alpha_{\text {upd }}: M \times C \rightarrow M
\]


Not yet a strategy!
\[
\sigma_{i}: S^{*} S_{i} \rightarrow E
\]

\section*{Chromatic* memory}

\section*{Memory skeleton}
\[
\mathscr{M}=\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right) \text { with } m_{\text {init }} \in M \text { and } \alpha_{\text {upd }}: M \times C \rightarrow M
\]


Not yet a strategy!
\[
\sigma_{i}: S^{*} S_{i} \rightarrow E
\]

Strategy with memory \(\mathscr{M}\)
Additional next-move function \(\alpha_{\text {next }}: M \times S_{i} \rightarrow E\)
\[
\left(\mathscr{M}, \alpha_{\text {next }}\right) \text { defines a strategy! }
\]

\section*{Chromatic* memory}

\section*{Memory skeleton}
\[
\mathscr{M}=\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right) \text { with } m_{\text {init }} \in M \text { and } \alpha_{\text {upd }}: M \times C \rightarrow M
\]


Not yet a strategy!
\[
\sigma_{i}: S^{*} S_{i} \rightarrow E
\]

Strategy with memory \(\mathscr{M}\)
Additional next-move function \(\alpha_{\text {next }}: M \times S_{i} \rightarrow E\)
\[
\left(\mathscr{M}, \alpha_{\text {next }}\right) \text { defines a strategy! }
\]

Remark: positional strategies are \(\mathscr{M}_{\text {triv }}\)-strategies, where \(\mathscr{M}_{\text {triv }}\) is

\section*{Chromatic* memory}

\section*{Memory skeleton}
\[
\mathscr{M}=\left(M, m_{\mathrm{init}}, \alpha_{\mathrm{upd}}\right) \text { with } m_{\mathrm{init}} \in M \text { and } \alpha_{\mathrm{upd}}: M \times S \rightarrow M
\]


Not yet a strategy! \(\sigma_{i}: S^{*} S_{i} \rightarrow E\)

Strategy with memory \(\mathscr{M}\)
Additional next-move function \(\alpha_{\text {next }}: M \times S_{i} \rightarrow E\)
\[
\left(\mathscr{M}, \alpha_{\text {next }}\right) \text { defines a strategy! }
\]

Remark: positional strategies are \(\mathscr{M}_{\text {triv }}\)-strategies, where \(\mathscr{M}_{\text {triv }}\) is


\title{
Example of chromatic memory
}


This skeleton is sufficient for the winning condition Büchi \((a) \wedge\) Büchi \((b)\)

\section*{Example of chromatic memory}


This skeleton is sufficient for the winning condition Büchi \((a) \wedge\) Büchi \((b)\)

That is, for every game, if there is a winning strategy, there is one based on this skeleton

\section*{Example of chromatic memory}


This skeleton is sufficient for the winning condition Büchi \((a) \wedge\) Büchi \((b)\)

That is, for every game, if there is a winning strategy, there is one based on this skeleton


\section*{Example of chromatic memory}


This skeleton is sufficient for the winning condition Büchi( \(a\) ) ^ Büchi \((b)\)

That is, for every game, if there is a winning strategy, there is one based on this skeleton

\[
\begin{array}{cccc}
\alpha_{\text {next }}: & M \times S_{1} & \rightarrow & E \\
& \left(m_{1}, s_{2}\right) & \mapsto & \left(s_{2}, b, s_{2}\right) \\
& \left(m_{2}, s_{2}\right) & \mapsto & \left(s_{2}, a, s_{1}\right) \\
& \left(m_{\star}, s_{3}\right) & \mapsto & \left(s_{3}, b, s_{1}\right)
\end{array}
\]

\section*{Example of chromatic memory}


This skeleton is sufficient for the winning condition Büchi( \(a\) ) ^ Büchi \((b)\)

That is, for every game, if there is a winning strategy, there is one based on this skeleton

\[
\begin{array}{cccc}
\alpha_{\text {next }}: & M \times S_{1} & \rightarrow & E \\
& \left(m_{1}, s_{2}\right) & \mapsto & \left(s_{2}, c, s_{3}\right) \\
& \left(m_{2}, s_{2}\right) & \mapsto & \left(s_{2}, a, s_{1}\right) \\
& \left(m_{\star}, s_{3}\right) & \mapsto & \left(s_{3}, b, s_{1}\right)
\end{array}
\]

\section*{Our goal}

\section*{Understand well low-memory specifications}

\section*{Our goal}

\section*{Understand well low-memory specifications}

\section*{Positional / finite-memory determinacy}

Is it the case that positional (resp. finite-memory) strategies suffice to win/be optimal when winning/optimal strategies exist?

\section*{Our goal}

\section*{Understand well low-memory specifications}

\section*{Positional / finite-memory determinacy}


Is it the case that positional (resp. finite-memory) strategies suffice to win/be optimal when winning/optimal strategies exist?

\section*{Our goal}

\section*{Understand well low-memory specifications}

\section*{Positional / finite-memory determinacy}


Is it the case that positional (resp. finite-memory) strategies suffice to win/be optimal when winning/optimal strategies exist?
- Finite vs infinite games

\title{
Characterizing positional and chromatic finite-memory determinacy in finite games
}


\section*{The approach}

\section*{The approach}
- Characterize winning objectives ensuring memoryless determinacy, that is, the existence of positional winning strategies (for both players) in all finite games

\section*{The approach}
- Characterize winning objectives ensuring memoryless determinacy, that is, the existence of positional winning strategies (for both players) in all finite games
- Should apply to reachability/safety objectives, mean-payoff, parity, ...

\section*{The approach}
- Characterize winning objectives ensuring memoryless determinacy, that is, the existence of positional winning strategies (for both players) in all finite games
- Should apply to reachability/safety objectives, mean-payoff, parity, ...
- Fundamental reference: [GZ05]

\section*{Properties of preference relations}

\title{
Properties of preference relations
}
- Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ).
- Let \(W \subseteq C^{\omega}\) be a winning objective (for \(P_{1}\) ).

\section*{Properties of preference relations}
- Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ).
- Let \(W \subseteq C^{\omega}\) be a winning objective (for \(P_{1}\) ).
- It is said monotone whenever:


\section*{Properties of preference relations}
- Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ).
- Let \(W \subseteq C^{\omega}\) be a winning objective (for \(P_{1}\) ).
- It is said monotone whenever:

- It is said selective whenever:


\section*{Properties of preference relations}
- Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ).
- Let \(W \subseteq C^{\omega}\) be a winning objective (for \(P_{1}\) ).
- It is said monotone whenever:

- It is said selective whenever:


\section*{Two characterizations}

Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ).
Characterization - Two-player games
The two following assertions are equivalent:
1. All finite games have positional optimal strategies for both players;
2. Both \(\sqsubseteq\) and \(\sqsubseteq^{-1}\) are monotone and selective.

\section*{Two characterizations}

Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ).

\section*{Characterization - Two-player games}

The two following assertions are equivalent:
1. All finite games have positional optimal strategies for both players;
2. Both \(\sqsubseteq\) and \(\sqsubseteq^{-1}\) are monotone and selective.

\section*{Characterization - One-player games}

The two following assertions are equivalent:
1. All finite \(P_{1}\)-games have positional optimal strategies;
2. \(\sqsubseteq\) is monotone and selective.

\section*{Applications}

\section*{Lifting theorem}
\(P_{i}\) has positional optimal strategies in all finite \(P_{i}\)-games \(\Downarrow\)
Both players have positional optimal strategies in all finite 2-player games.

\section*{Applications}

\section*{Lifting theorem}
\(P_{i}\) has positional optimal strategies in all finite \(P_{i}\)-games \(\Downarrow\)
Both players have positional optimal strategies in all finite 2-player games.

\section*{Very powerful and extremely useful in practice}
- Easy to analyse the one-player case (graph analysis)
- Mean-payoff, average-energy [BMRLL15]

\section*{Discussion of examples}
- Reachability, safety:
- Monotone (though not prefix-independent)
- Selective
- Parity, mean-payoff:
- Prefix-independent hence monotone
- Selective
- Average-energy games [BMRLL15]
- Lifting theorem!!


\section*{Properties of preference relations - Adding memory}
- Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ). Let \(\mathscr{M}\) be a memory skeleton.
- It is said \(\mathscr{M}\)-monotone whenever:
- It is said \(\mathscr{M}\)-selective whenever:

\section*{Properties of preference relations - Adding memory}
- Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ). Let \(\mathscr{M}\) be a memory skeleton.
- It is said \(\mathscr{M}\)-monotone whenever:

\[
\Rightarrow
\]
- It is said \(\mathscr{M}\)-selective whenever:

\section*{Properties of preference relations - Adding memory}
- Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ). Let \(\mathscr{M}\) be a memory skeleton.
- It is said \(\mathscr{M}\)-monotone whenever:

- It is said \(\mathscr{M}\)-selective whenever:

\section*{Properties of preference relations - Adding memory}
- Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ).

Let \(\mathscr{M}\) be a memory skeleton.
- It is said \(\mathscr{M}\)-monotone whenever:

- It is said \(\mathscr{M}\)-selective whenever:


\section*{Properties of preference relations - Adding memory}
- Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ).

Let \(\mathscr{M}\) be a memory skeleton.
- It is said \(\mathscr{M}\)-monotone whenever:

- It is said \(\mathscr{M}\)-selective whenever:


\section*{Properties of preference relations - Adding memory}
- Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ). Let \(\mathscr{M}\) be a memory skeleton.
- It is said \(\mathscr{M}\)-monotone whenever:

- It is said \(\mathscr{M}\)-selective whenever:


\section*{Two characterizations}

Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ) and \(\mathscr{M}\) be a memory skeleton. Characterization - Two-player games

The two following assertions are equivalent:
1. All finite games have \(\mathscr{M}\)-based optimal strategies for both players;
2. Both \(\sqsubseteq\) and \(\sqsubseteq^{-1}\) are \(\mathscr{M}\)-monotone and \(\mathscr{M}\)-selective.

\section*{Two characterizations}

Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ) and \(\mathscr{M}\) be a memory skeleton.
Characterization - Two-player games
The two following assertions are equivalent:
1. All finite games have \(\mathscr{M}\)-based optimal strategies for both players;
2. Both \(\sqsubseteq\) and \(\sqsubseteq^{-1}\) are \(\mathscr{M}\)-monotone and \(\mathscr{M}\)-selective.

\section*{Characterization - One-player games}

The two following assertions are equivalent:
1. All finite \(P_{1}\)-games have \(\mathscr{M}\)-based optimal strategies;
2. \(\sqsubseteq\) is \(\mathscr{M}\)-monotone and \(\mathscr{M}\)-selective.

\section*{Two characterizations}

Let \(\sqsubseteq\) be a preference relation (for \(P_{1}\) ) and \(\mathscr{M}\) be a memory skeleton.
Characterization - Two-player games
The two following assertions are equivalent:
1. All finite games have \(\mathscr{M}\)-based optimal strategies for both players;
2. Both \(\sqsubseteq\) and \(\sqsubseteq^{-1}\) are \(\mathscr{M}\)-monotone and \(\mathscr{M}\)-selective.

\section*{Characterization - One-player games}

The two following assertions are equivalent:
1. All finite \(P_{1}\)-games have \(\mathscr{M}\)-based optimal strategies;
2. \(\sqsubseteq\) is \(\mathscr{M}\)-monotone and \(\mathscr{M}\)-selective.
\[
\rightarrow \text { We recover [GZ05] with } \mathscr{M}=\mathscr{M}_{\text {triv }}
\]

\section*{Applications}

\section*{Lifting theorem}
\(P_{i}\) has \(\mathscr{M}_{i}\)-based optimal strategies in all finite \(P_{i}\)-games
\(\Downarrow\)
Both players have \(\left(\mathscr{M}_{1} \times \mathscr{M}_{2}\right)\)-based optimal strategies in all finite two-player games.

\section*{Applications}

\section*{Lifting theorem}
\(P_{i}\) has \(\mathscr{M}_{i}\)-based optimal strategies in all finite \(P_{i}\)-games \(\Downarrow\)
Both players have \(\left(\mathscr{M}_{1} \times \mathscr{M}_{2}\right)\)-based optimal strategies in all finite two-player games.

\section*{Very powerful and extremely useful in practice}
- Easy to analyse the one-player case (graph analysis)
- Conjunction of \(\omega\)-regular objectives

\section*{Example of application}

\author{
\(W=\operatorname{Reach}(a) \wedge \operatorname{Reach}(b)\)
}
\(\mathscr{M}_{1} \quad C \backslash\{a\} \longrightarrow \xrightarrow{\frac{1}{m_{1}}} \xrightarrow{a} \xrightarrow{m_{2}} \bigcirc C\)

\section*{Example of application}
\[
W=\operatorname{Reach}(a) \wedge \operatorname{Reach}(b)
\]


\section*{Example of application}
\[
W=\operatorname{Reach}(a) \wedge \operatorname{Reach}(b)
\]



\section*{Example of application}
\[
W=\operatorname{Reach}(a) \wedge \operatorname{Reach}(b)
\]


\section*{Example of application}
\[
W=\operatorname{Reach}(a) \wedge \operatorname{Reach}(b)
\]
\(\sqsubseteq_{W}\) is \(\mathscr{M}_{1}\)-monotone
but not \(\mathscr{M}_{1}\)-selective

\[
\sqsubseteq_{W} \text { is } \mathscr{M}_{2} \text {-selective }
\]
- \(\sqsubseteq_{W}\) is \(\mathscr{M}_{1}\)-monotone and \(\mathscr{M}_{2}\)-selective
- \(\sqsubseteq_{W}^{-1}\) is \(\mathscr{M}_{1}\)-monotone and \(\mathscr{M}_{\text {triv }}\)-selective

\section*{Example of application}
\[
W=\operatorname{Reach}(a) \wedge \operatorname{Reach}(b)
\]

\(\rightarrow\) Memory \(\mathscr{M}_{2}\) is sufficient for both players in all finite games

\section*{Partial conclusion}

Finite games

\section*{Partial conclusion}

\section*{Finite games}
- Complete characterization of winning objectives (and even preference relations) that ensure chromatic finite-memory determinacy for both players

\section*{Partial conclusion}

\section*{Finite games}
- Complete characterization of winning objectives (and even preference relations) that ensure chromatic finite-memory determinacy for both players
- One-to-two-player lifts
(requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)

\section*{Partial conclusion}

\section*{Finite games}
- Complete characterization of winning objectives (and even preference relations) that ensure chromatic finite-memory determinacy for both players
- One-to-two-player lifts
(requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)
- Further questions:
- Can we reduce/optimize the memory?
- What about chaotic finite memory?
- Can we focus on one player (so-called half-positionality)?

\title{
Characterizing positional and chromatic finite-memory determinacy in infinite games
}


\section*{The case of mean-payoff}
- Objective for \(P_{1}\) : get non-negative (limsup) mean-payoff
- In finite games: positional strategies are sufficient to win
- In infinite games: infinite memory is required to win


\section*{A first insight [CN06]}

\section*{- Let \(W\) be a prefix-independent objective.}

\section*{A first insight [CN06]}
- Let \(W\) be a prefix-independent objective.

\section*{Characterization - Two-player games}

The two following assertions are equivalent:
1. Positional optimal strategies are sufficient for \(W\) in all (infinite) games for both players;
2. \(W\) is a parity condition

That is, there are \(n \in \mathbb{N}\) and \(\gamma: C \rightarrow\{0,1, \ldots, n\}\) such that
\(W=\left\{c_{1} c_{2} \ldots \in C^{\omega} \mid \lim \sup \gamma\left(c_{i}\right)\right.\) is even \(\}\)

\section*{A first insight [CN06]}
- Let \(W\) be a prefix-independent objective.

\section*{Characterization - Two-player games}

The two following assertions are equivalent:
1. Positional optimal strategies are sufficient for \(W\) in all (infinite) games for both players;
2. \(W\) is a parity condition

That is, there are \(n \in \mathbb{N}\) and \(\gamma: C \rightarrow\{0,1, \ldots, n\}\) such that
\(W=\left\{c_{1} c_{2} \ldots \in C^{\omega} \mid \lim \sup \gamma\left(c_{i}\right)\right.\) is even \(\}\)

\section*{A first insight [CN06]}
- Let \(W\) be a prefix-independent objective.

\section*{Characterization - Two-player games}

The two following assertions are equivalent:
1. Positional optimal strategies are sufficient for \(W\) in all (infinite) games for both players;
2. \(W\) is a parity condition

That is, there are \(n \in \mathbb{N}\) and \(\gamma: C \rightarrow\{0,1, \ldots, n\}\) such that
\(W=\left\{c_{1} c_{2} \ldots \in C^{\omega} \mid \lim \sup \gamma\left(c_{i}\right)\right.\) is even \(\}\)

\section*{Some language theory (1)}
- Let \(L \subseteq C^{*}\) be a language of finite words

\section*{Right congruence}
- Given \(x, y \in C^{*}\),
\[
x \sim_{L} y \Leftrightarrow \forall z \in C^{*},(x \cdot z \in L \Leftrightarrow y \cdot z \in L)
\]

\section*{Some language theory (1)}
- Let \(L \subseteq C^{*}\) be a language of finite words

\section*{Right congruence}
- Given \(x, y \in C^{*}\),
\[
x \sim_{L} y \Leftrightarrow \forall z \in C^{*},(x \cdot z \in L \Leftrightarrow y \cdot z \in L)
\]

\section*{Myhill-Nerode Theorem}
- \(L\) is regular if and only if \(\sim_{L}\) has finite index;
- There is an automaton whose states are classes of \(\sim_{L}\), which recognizes \(L\).

\section*{Some language theory (2)}
- Let \(L \subseteq C^{\omega}\) be a language of infinite words

\section*{Right congruence}
- Given \(x, y \in C^{*}\),
\[
x \sim_{L} y \Leftrightarrow \forall z \in C^{\omega},(x \cdot z \in L \Leftrightarrow y \cdot z \in L)
\]

\section*{Some language theory (2)}
- Let \(L \subseteq C^{\omega}\) be a language of infinite words

\section*{Right congruence}
- Given \(x, y \in C^{*}\),
\[
x \sim_{L} y \Leftrightarrow \forall z \in C^{\omega},(x \cdot z \in L \Leftrightarrow y \cdot z \in L)
\]

\section*{Link with \(\omega\)-regularity?}
- If \(L\) is \(\omega\)-regular, then \(\sim_{L}\) has finite index;
- The automaton based on \(\sim_{L}\) is a so-called prefix-classifier;
- The converse does not hold (e.g. all prefix-independent languages are such that \(\sim_{L}\) has only one element).

\section*{Four examples}
\begin{tabular}{|c|c|c|}
\hline Objective & Prefix classifier \(\mathscr{M}_{\sim}\) & One-player memory \\
\hline Parity objective & \[
\rightarrow \searrow c
\] & \[
\rightarrow\langle\subset
\] \\
\hline Mean-payoff \(\geq 0\) & \[
\rightarrow\langle c
\] & No finite automaton \\
\hline \[
\begin{aligned}
& C=\{a, b\} \\
& W=b^{*} a b^{*} a C^{\omega}
\end{aligned}
\] &  & \[
\rightarrow\langle 仓 c
\] \\
\hline \[
\begin{aligned}
& C=\{a, b\} \\
& W=C^{*}(a b)^{\omega}
\end{aligned}
\] & \[
\rightarrow\langle c
\] &  \\
\hline
\end{tabular}

\section*{Characterization}
- Let \(W \subseteq C^{\omega}\) be a winning objective.

\section*{Characterization - Two-player games}

If a finite memory structure \(\mathscr{M}\) suffices to play optimally in one-player infinite arenas for both players, then the prefix-classifier \(\mathscr{M}_{\sim}\) is finite and \(W\) is recognized by a parity automaton \(\left(\mathscr{M}_{\sim} \otimes \mathscr{M}, \gamma\right)\), with \(\gamma: M \times C \rightarrow\{0,1, \ldots, n\}\).
\(\rightarrow\) Generalizes [CN06] where both \(\mathscr{M}\) and \(\mathscr{M}_{\sim}\) are trivial

\section*{Four examples}
\begin{tabular}{|c|c|c|}
\hline Objective & Prefix classifier \(\mathscr{M}_{\sim}\) & One-player memory \\
\hline Parity objective & \[
\rightarrow \circlearrowleft c
\] & \(\rightarrow \bigcirc C \mapsto\{0,1, \ldots, n\}\) \\
\hline Mean-payoff \(\geq 0\) & \[
\rightarrow\langle c
\] & No finite automaton \\
\hline \[
\begin{aligned}
& C=\{a, b\} \\
& W=b^{*} a b^{*} a C^{\omega}
\end{aligned}
\] &  & \[
\rightarrow\langle\leftrightarrows c
\] \\
\hline \[
\begin{aligned}
& C=\{a, b\} \\
& W=C^{*}(a b)^{\omega}
\end{aligned}
\] & \[
\rightarrow \searrow c
\] &  \\
\hline
\end{tabular}

\section*{Corollaries}

\section*{Lifting theorem}

If \(W\) and \(W^{c}\) are finite-memory-determined in one-player infinite games, then \(W\) and \(W^{c}\) are finite-memory-determined in two-player infinite games.

\section*{Corollaries}

\section*{Lifting theorem}

If \(W\) and \(W^{c}\) are finite-memory-determined in one-player infinite games, then \(W\) and \(W^{c}\) are finite-memory-determined in two-player infinite games.

\section*{Characterization}
\(W\) is finite-memory-determined in (two-player) infinite games if and only if \(W\) is \(\omega\)-regular.

\section*{Some consequences}
- Mean-payoff \(\geq 0\) is not \(\omega\)-regular (even though it is positionally determined in finite games)
- Some discounted objectives are \(\omega\)-regular: e.g. condition \(\mathrm{DS}_{\lambda}^{\geq 0}(\) with \(\lambda \in(0,1) \cap \mathbb{Q}, C=[-k, k] \cap \mathbb{Z})\) is \(\omega\) regular if and only if \(k<\frac{1}{\lambda}-1\) or \(\lambda=\frac{1}{n}\) for some \(n \in \mathbb{N}_{>0}\)


\section*{Partial conclusion}

Infinite games

\section*{Partial conclusion}

\section*{Infinite games}
- Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games \(=\omega\)-regular

\section*{Partial conclusion}

\section*{Infinite games}
- Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games \(=\omega\)-regular
- One-to-two-player lift
(requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)

\section*{Partial conclusion}

\section*{Infinite games}
- Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games \(=\omega\)-regular
- One-to-two-player lift
(requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)
- Further questions:
- Can be reduce/optimize the memory? E.g. is \(\mathscr{M}_{\sim}\) necessary in the memory for two players?
- What about chaotic finite memory?
- Can we focus on one player (so-called half-positionality)?
- What about finite branching?

\section*{Conclusion}


\section*{What you can bring home}

\section*{What you can bring home}
- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)

\section*{What you can bring home}
- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
- For simpler strategies, use low memory!
- ... even though low memory does not mean it is easy...

\section*{What you can bring home}
- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
- For simpler strategies, use low memory!
- ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives


\section*{What you can bring home}
- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
- For simpler strategies, use low memory!
- ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives

- Going further:
- Games under partial observation, e.g. players with their own knowledge (of the game, of the other's choices, ...)
- Half-positionality or half-finite-memory of objectives (preliminary result [BCRV22])```

