

1

Memory complexity for winning games on graphs

Patricia Bouyer

Laboratoire Méthodes Formelles Université Paris-Saclay, CNRS, ENS Paris-Saclay France

Based on joined work with Stéphane Le Roux, Youssouf Oualhadj, Michael Randour, Pierre Vandenhove. Thanks to Pierre for his slides

Motivation

The setting

My field of research: Formal methods

Give guarantees (+ certificates) on functionalities or performances

System

System

System

System

System

System

 $\sqrt[n]{}$

System

 $\sqrt[n]{}$

Model-checking algorithm

$$\varphi = \mathbf{AG} \neg \operatorname{crash} \land \left(\mathbb{P}(\mathbf{F}_{\leq 2h} \operatorname{arr}) \geq 0, 9 \right)$$

System

Properties

 $\sqrt[n]{}$

Control or synthesis

System

Properties

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Simple?

Minimal information for deciding the next steps

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Simple?

Minimal information for deciding the next steps

When are simple strategies sufficient to play optimally?

Our general approach

[Tho95] On the synthesis of strategies in infinite games (STACS'95).

[Tho02] Thomas. Infinite games and verification (CAV'02).

[GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives in Games and Interactions, 2008).

[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).

Our general approach

 Use graph-based game models (state machines) to represent the system and its evolution

[Tho95] On the synthesis of strategies in infinite games (STACS'95).

[Tho02] Thomas. Infinite games and verification (CAV'02).

[GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives in Games and Interactions, 2008).

[BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).

Our general approach

- Use graph-based game models (state machines) to represent the system and its evolution
- Use **game theory concepts** to express admissible situations
 - Winning strategies
 - (Pareto-)Optimal strategies
 - Nash equilibria
 - Subgame-perfect equilibria
 - ...

[Tho95] On the synthesis of strategies in infinite games (STACS'95).

[Tho02] Thomas. Infinite games and verification (CAV'02).

[[]GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives in Games and Interactions, 2008).

[[]BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).

Games What they often are

Interaction

 Model and analyze (using math. tools) situations of interactive decision making

Wide range of applicability

« [...] it is a context-free mathematical toolbox. »

- Social science: e.g. social choice theory
- Theoretical economics: e.g. models of markets, auctions
- Political science: e.g. fair division
- Biology: e.g. evolutionary biology
- ...

Wide range of applicability

« [...] it is a context-free mathematical toolbox. »

- Social science: e.g. social choice theory
- Theoretical economics: e.g. models of markets, auctions
- Political science: e.g. fair division
- Biology: e.g. evolutionary biology

• ...

[MSZ13] Maschler, Solan, Zamir. Game theory (2013).

+ Computer science

*s*₀

$$s_0 \rightarrow s_1$$

1. P_1 chooses the edge (s_0, s_1)

$$s_0 \rightarrow s_1 \rightarrow s_4$$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)

$$s_0 \rightarrow s_1 \rightarrow s_4 \rightarrow s_2$$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)
- 4. P_1 chooses the edge (s_2, \bigcirc)

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)
- 4. P_1 chooses the edge (s_2, \bigcirc)

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)
- 4. P_1 chooses the edge (s_2, \bigcirc)

Players use **strategies** to play. A strategy for P_i is $\sigma_i : S^*S_i \to E$

$C = \{ a, b \}$ $E \subseteq S \times C \times S$

 $C = \{ a, b \}$ $E \subseteq S \times C \times S$

• Winning objective for $P_i: W_i \subseteq C^{\omega}$, e.g. $W_1 = C^* \cdot b \cdot C^{\omega}$

 $C = \{ a, b \}$ $E \subseteq S \times C \times S$

- Winning objective for $P_i: W_i \subseteq C^{\omega}$, e.g. $W_1 = C^* \cdot b \cdot C^{\omega}$
- Payoff function: $p_i: C^{\omega} \to \mathbb{R}$, e.g. mean-payoff

 $C = \{ a, b \}$ $E \subseteq S \times C \times S$

- Winning objective for $P_i: W_i \subseteq C^{\omega}$, e.g. $W_1 = C^* \cdot b \cdot C^{\omega}$
- Payoff function: $p_i: C^{\omega} \to \mathbb{R}$, e.g. mean-payoff
- Preference relation: $\sqsubseteq_i \subseteq C^{\omega} \times C^{\omega}$ (total preorder)
Objectives for the players

Zero-sum hypothesis

 $C = \{ a, b \}$ $E \subseteq S \times C \times S$

• Winning objective for $P_i: W_i \subseteq C^\omega$, e.g. $W_1 = C^* \cdot b \cdot C^\omega$

$$W_2 = W_1^c$$

- Payoff function: $p_i: C^{\omega} \to \mathbb{R}$, e.g. mean-payoff
- Preference relation: $\sqsubseteq_i \subseteq C^{\omega} \times C^{\omega}$ (total preorder)

What does it mean to win a game?

What does it mean to win a game?

► Play $\rho = s_0 s_1 s_2 \dots$ is compatible with σ_i whenever $s_j \in S_i$ implies $(s_j, s_{j+1}) = \sigma_i (s_0 s_1 \dots s_j)$. We write $Out(\sigma_i)$.

► Strategy *σ*

- ▶ Strategy *o*
- ► Out(*o*) has two plays, which are both winning

► Strategy *o*

- ▶ Strategy *o*
- ► Out() has infinitely many plays, some of them are not winning

What does it mean to win a game?

- ► Play $\rho = s_0 s_1 s_2 \dots$ is compatible with σ_i whenever $s_j \in S_i$ implies $(s_j, s_{j+1}) = \sigma_i (s_0 s_1 \dots s_j)$. We write $Out(\sigma_i)$.
- σ_i is **winning** if all plays compatible with σ_i belong to W_i

What does it mean to win a game?

- ► Play $\rho = s_0 s_1 s_2 \dots$ is compatible with σ_i whenever $s_j \in S_i$ implies $(s_j, s_{j+1}) = \sigma_i (s_0 s_1 \dots s_j)$. We write $Out(\sigma_i)$.
- σ_i is **winning** if all plays compatible with σ_i belong to W_i

Martin's determinacy theorem

Turn-based zero-sum games are determined for Borel winning objectives: in every game, either P_1 or P_2 has a winning strategy.

 $\bigcup_{i \in \mathcal{O}} | \sigma_i |$

• σ_1 is better than σ'_1 whenever $\operatorname{Out}(\sigma_1)^{\uparrow} \subseteq \operatorname{Out}(\sigma'_1)^{\uparrow}$

- - σ_1 is better than σ'_1 whenever $\operatorname{Out}(\sigma_1)^{\uparrow} \subseteq \operatorname{Out}(\sigma'_1)^{\uparrow}$
 - σ_1 is **optimal** whenever it is better than any other σ'_1

• σ_1 is better than σ'_1 whenever $\operatorname{Out}(\sigma_1)^{\uparrow} \subseteq \operatorname{Out}(\sigma'_1)^{\uparrow}$

• σ_1 is **optimal** whenever it is better than any other σ_1'

Remark

- Optimal strategies might not exist
- If \sqsubseteq given by a payoff function, notion of ε -optimal strategies
- Optimality vs subgame-optimality

• Can P_1 win the game, i.e. does P_1 have a winning strategy? Can P_1 play optimally?

Can P₁ win the game, i.e. does P₁ have a winning strategy?
 Can P₁ play optimally?

► Is there an effective (efficient) way of winning?

- Can P₁ win the game, i.e. does P₁ have a winning strategy?
 Can P₁ play optimally?
- ► Is there an effective (efficient) way of winning?
- How complex is it to win?

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_1 starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_1 starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_1 starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_1 starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- P_1 starts

All states are winning for P_1

One state is not winning for P_1 It is winning for P_2

Chess game

[Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress Mathematicians, 1912).

[Au89] Aumann. Lectures on Game Theory (1989).

Chess game

Zermelo's Theorem

From every position, either White can force a win, or Black can force a win, or both sides can force at least a draw.

[Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress Mathematicians, 1912).

[Au89] Aumann. Lectures on Game Theory (1989).

Chess game

Zermelo's Theorem

From every position, either White can force a win, or Black can force a win, or both sides can force at least a draw.

 We don't know what is the case for the initial position, and no winning strategy (for either of the players) is known

[Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress Mathematicians, 1912).

[Au89] Aumann. Lectures on Game Theory (1989).
Chess game

Zermelo's Theorem

From every position, either White can force a win, or Black can force a win, or both sides can force at least a draw.

- We don't know what is the case for the initial position, and no winning strategy (for either of the players) is known
- According to Claude Shannon, there are 10^{43} legit positions in chess

[[]Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress Mathematicians, 1912).

[[]Au89] Aumann. Lectures on Game Theory (1989).

Solving the Hex game

First player has always a winning strategy.

Solving the Hex game

First player has always a winning strategy.

• Determinacy results (no tie is possible) + strategy stealing argument

Solving the Hex game

First player has always a winning strategy.

- Determinacy results (no tie is possible) + strategy stealing argument
- A winning strategy is not known yet.

What we do not consider

- Concurrent games
- Stochastic games and strategies
- Partial information
- Values
- Determinacy of Blackwell games

Families of strategies

Families of strategies

General strategies

$$\sigma_i: S^*S_i \to E$$

- May use any information of the past execution
- Information used is therefore potentially infinite
- Not adequate if one targets implementation

From $\sigma_i: S^*S_i \to E$ to $\sigma_i: S_i \to E$

From $\sigma_i: S^*S_i \to E$ to $\sigma_i: S_i \to E$

Positional = memoryless

From $\sigma_i: S^*S_i \to E$ to $\sigma_i: S_i \to E$

- Positional = memoryless
- Reachability, parity, mean-payoff, positive energy, ... \rightarrow positional strategies are sufficient to win

From $\sigma_i: S^*S_i \to E$ to $\sigma_i: S_i \to E$

- Positional = memoryless
- Reachability, parity, mean-payoff, positive energy, ... \rightarrow positional strategies are sufficient to win

Example: mean-payoff

[Ohl21] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis).

Example: mean-payoff

• P_1 maximizes, P_2 minimizes

[Ohl21] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis).

Example: mean-payoff

- P_1 maximizes, P_2 minimizes
- Positional strategies are sufficient to win

[Ohl21] Ohlmann. Monotonic graphs for Parity and Mean-Payoff games (PhD thesis).

Do we need more?

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

Winning strategy

- At each visit to s₁, loop once in s₁ and then go to s₂
- At each visit to s₂, loop once in s₂ and then go to s₁
- Generates the sequence $(acbc)^{\omega}$

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

Winning strategy

- At each visit to s_1 , loop once in s_1 and then go to s_2
- At each visit to s₂, loop once in s₂ and then go to s₁
- Generates the sequence $(acbc)^{\omega}$

 $^{\rm *}$ Reach the target with energy level 0 » $FG~({\rm EL}=0)$

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

Winning strategy

- At each visit to s_1 , loop once in s_1 and then go to s_2
- At each visit to s_2 , loop once in s_2 and then go to s_1
- Generates the sequence $(acbc)^{\omega}$

 $^{\rm *}$ Reach the target with energy level 0 » $FG~({\rm EL}=0)$

Winning strategy

- Loop five times in s_0
- Then go to the target
- ▶ Generates the sequence of colors
 1 1 1 1 1 − 5 0 0 0...

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

Winning strategy

- At each visit to s_1 , loop once in s_1 and then go to s_2
- At each visit to s_2 , loop once in s_2 and then go to s_1
- Generates the sequence $(acbc)^{\omega}$

 $^{\rm *}$ Reach the target with energy level 0 » $FG~({\rm EL}=0)$

Winning strategy

- Loop five times in s_0
- Then go to the target
- Generates the sequence of colors $1 \ 1 \ 1 \ 1 \ 1 \ -5 \ 0 \ 0 \ 0...$

These two strategies require only **finite** memory

Example: multi-dimensional mean-payoff

« Have a (limsup) mean-payoff ≥ 0 on both dimensions » So-called *multi-dimensional mean-payoff*

Example: multi-dimensional mean-payoff

« Have a (limsup) mean-payoff ≥ 0 on both dimensions » So-called *multi-dimensional mean-payoff*

Winning strategy

• After k-th switch between s_1 and s_2 , loop 2k-1 times and then switch back

• Generates the sequence (-1, -1)(-1, +1)(-1, -1)(+1, -1)(+1, -1)(+1, -1)(-1, -1)(-1, -1)(-1, +1)(-1, +1)(-1, +1)(-1, +1)(-1, -1)(-1, -1)(+1, -1)(+1, -1)(+1, -1)(+1, -1)(+1, -1)(+1, -1)(-1, -1)...

Example: multi-dimensional mean-payoff

« Have a (limsup) mean-payoff ≥ 0 on both dimensions » So-called *multi-dimensional mean-payoff*

Winning strategy

• After k-th switch between s_1 and s_2 , loop 2k-1 times and then switch back

• Generates the sequence (-1, -1)(-1, +1)(-1, -1)(+1, -1)(+1, -1)(-1, -1)(-1, -1)(-1, -1)(-1, +1)(-1, +1)(-1, +1)(-1, +1)(-1, -1)(-1, -1)(+1, -1)(+1, -1)(+1, -1)(+1, -1)(+1, -1)(+1, -1)(-1, -1).

This strategy requires **infinite** memory, and this is unavoidable

We focus on finite memory!

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Not yet a strategy! $\sigma_i: S^*S_i \to E$

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Not yet a strategy! $\sigma_i: S^*S_i \to E$

Strategy with memory \mathcal{M}

Additional next-move function $\alpha_{next}: M \times S_i \to E$

 $(\mathcal{M}, \alpha_{\mathsf{next}})$ defines a strategy!

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Not yet a strategy! $\sigma_i: S^*S_i \to E$

Strategy with memory \mathcal{M}

Additional next-move function $\alpha_{\text{next}}: M \times S_i \to E$

 $(\mathcal{M}, \alpha_{\text{next}})$ defines a strategy!

Remark: positional strategies are $\mathcal{M}_{\mathrm{triv}}$ -strategies, where $\mathcal{M}_{\mathrm{triv}}$ is

Memory skeleton

Remark: positional strategies are $\mathcal{M}_{\mathrm{triv}}$ -strategies, where $\mathcal{M}_{\mathrm{triv}}$ is

This skeleton is sufficient for the winning condition $B\ddot{u}chi(a) \wedge B\ddot{u}chi(b)$

This skeleton is sufficient for the winning condition $B\ddot{u}chi(a) \wedge B\ddot{u}chi(b)$

This skeleton is sufficient for the winning condition $B\ddot{u}chi(a) \wedge B\ddot{u}chi(b)$

This skeleton is sufficient for the winning condition $\text{Büchi}(a) \wedge \text{Büchi}(b)$

This skeleton is sufficient for the winning condition $\text{Büchi}(a) \wedge \text{Büchi}(b)$

$$\begin{array}{rcccc} \text{ext} & & M \times S_1 & \rightarrow & E \\ & & (m_1, s_2) & \mapsto & (s_2, c, s_3) \\ & & (m_2, s_2) & \mapsto & (s_2, a, s_1) \\ & & (m_{\star}, s_3) & \mapsto & (s_3, b, s_1) \end{array}$$
Understand well low-memory specifications

Understand well low-memory specifications

Positional / finite-memory determinacy

Is it the case that positional (resp. finite-memory) strategies suffice to win/be optimal when winning/optimal strategies exist?

Understand well low-memory specifications

Positional / finite-memory determinacy

Is it the case that positional (resp. finite-memory) strategies suffice to win/be optimal when winning/optimal strategies exist?

Understand well low-memory specifications

Positional / finite-memory determinacy

Is it the case that positional (resp. finite-memory) strategies suffice to win/be optimal when winning/optimal strategies exist?

Finite vs infinite games

Characterizing positional and chromatic finite-memory determinacy in finite games

 Characterize winning objectives ensuring memoryless determinacy, that is, the existence of positional winning strategies (for both players) in all finite games

- Characterize winning objectives ensuring memoryless determinacy, that is, the existence of positional winning strategies (for both players) in all finite games
- ► Should apply to reachability/safety objectives, mean-payoff, parity, ...

- Characterize winning objectives ensuring memoryless determinacy, that is, the existence of positional winning strategies (for both players) in all finite games
- Should apply to reachability/safety objectives, mean-payoff, parity, ...
- Fundamental reference: [GZ05]

- Let \sqsubseteq be a preference relation (for P_1).
- Let $W \subseteq C^{\omega}$ be a winning objective (for P_1).

- Let \sqsubseteq be a preference relation (for P_1).
- Let $W \subseteq C^{\omega}$ be a winning objective (for P_1).
- It is said monotone whenever:

- Let \sqsubseteq be a preference relation (for P_1).
- Let $W \subseteq C^{\omega}$ be a winning objective (for P_1).
- It is said monotone whenever:

- Let \sqsubseteq be a preference relation (for P_1).
- Let $W \subseteq C^{\omega}$ be a winning objective (for P_1).
- It is said monotone whenever:

Let \sqsubseteq be a preference relation (for P_1).

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have positional optimal strategies for both players;
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are monotone and selective.

Let \sqsubseteq be a preference relation (for P_1).

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have positional optimal strategies for both players;
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are monotone and selective.

Characterization - One-player games

The two following assertions are equivalent:

- 1. All finite P_1 -games have positional optimal strategies;
- 2. \Box is monotone and selective.

Applications

Lifting theorem

P_i has positional optimal strategies in all finite P_i -games \Downarrow

Both players have positional optimal strategies in all finite 2-player games.

Applications

Lifting theorem

 P_i has positional optimal strategies in all finite P_i -games \Downarrow

Both players have positional optimal strategies in all finite 2-player games.

Very powerful and extremely useful in practice

- Easy to analyse the one-player case (graph analysis)
 - Mean-payoff, average-energy [BMRLL15]

Discussion of examples

- Reachability, safety:
 - Monotone (though not prefix-independent)
 - Selective
- Parity, mean-payoff:
 - Prefix-independent hence monotone
 - Selective
- Average-energy games [BMRLL15]
 - Lifting theorem!!

- Let \sqsubseteq be a preference relation (for P_1). Let \mathscr{M} be a memory skeleton.
- ► It is said *M*-monotone whenever:

► It is said *M*-selective whenever:

- Let \sqsubseteq be a preference relation (for P_1). Let \mathscr{M} be a memory skeleton.
- ► It is said *M*-monotone whenever:

► It is said *M*-selective whenever:

- Let \sqsubseteq be a preference relation (for P_1). Let \mathscr{M} be a memory skeleton.
- ► It is said *M*-monotone whenever:

► It is said *M*-selective whenever:

- Let \sqsubseteq be a preference relation (for P_1). Let \mathscr{M} be a memory skeleton.
- ► It is said *M*-monotone whenever:

It is said *M*-selective whenever:

- Let \sqsubseteq be a preference relation (for P_1). Let \mathscr{M} be a memory skeleton.
- ► It is said *M*-monotone whenever:

It is said *M*-selective whenever:

- Let \sqsubseteq be a preference relation (for P_1). Let \mathscr{M} be a memory skeleton.
- ► It is said *M*-monotone whenever:

It is said *M*-selective whenever:

Let \sqsubseteq be a preference relation (for P_1) and \mathscr{M} be a memory skeleton.

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have \mathcal{M} -based optimal strategies for both players;
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are \mathscr{M} -monotone and \mathscr{M} -selective.

Let \sqsubseteq be a preference relation (for P_1) and \mathscr{M} be a memory skeleton.

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have \mathcal{M} -based optimal strategies for both players;
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are \mathscr{M} -monotone and \mathscr{M} -selective.

Characterization - One-player games

The two following assertions are equivalent:

- 1. All finite P_1 -games have \mathcal{M} -based optimal strategies;
- 2. \sqsubseteq is \mathscr{M} -monotone and \mathscr{M} -selective.

Let \sqsubseteq be a preference relation (for P_1) and \mathscr{M} be a memory skeleton.

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have \mathcal{M} -based optimal strategies for both players;
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are \mathscr{M} -monotone and \mathscr{M} -selective.

Characterization - One-player games

The two following assertions are equivalent:

- 1. All finite P_1 -games have \mathcal{M} -based optimal strategies;
- 2. \sqsubseteq is \mathscr{M} -monotone and \mathscr{M} -selective.

 \rightarrow We recover [GZ05] with $\mathcal{M} = \mathcal{M}_{\text{triv}}$

Applications

Lifting theorem

 $\begin{array}{c} P_i \text{ has } \mathscr{M}_i \text{-based optimal strategies in all finite } P_i \text{-games} \\ \Downarrow \\ \\ \text{Both players have } (\mathscr{M}_1 \times \mathscr{M}_2) \text{-based optimal strategies} \\ & \text{ in all finite two-player games.} \end{array}$

Applications

Lifting theorem

 $\begin{array}{c} P_i \, \mathrm{has} \, \mathscr{M}_i \mathrm{-based} \, \mathrm{optimal} \, \mathrm{strategies} \, \mathrm{in} \, \mathrm{all} \, \mathrm{finite} \, P_i \mathrm{-games} \\ & \Downarrow \\ \\ \mathrm{Both} \, \mathrm{players} \, \mathrm{have} \, (\mathscr{M}_1 \times \mathscr{M}_2) \mathrm{-based} \, \mathrm{optimal} \, \mathrm{strategies} \\ & \mathrm{in} \, \mathrm{all} \, \mathrm{finite} \, \mathrm{two-player} \, \mathrm{games}. \end{array}$

Very powerful and extremely useful in practice

- Easy to analyse the one-player case (graph analysis)
 - Conjunction of ω -regular objectives

 $W = \operatorname{Reach}(a) \wedge \operatorname{Reach}(b)$

 $W = \text{Reach}(a) \land \text{Reach}(b)$

 $\sqsubseteq_W \text{ is } \mathscr{M}_1 \text{-monotone}$ but not $\mathscr{M}_1 \text{-selective}$

 $W = \operatorname{Reach}(a) \wedge \operatorname{Reach}(b)$

 \sqsubseteq_W is \mathcal{M}_1 -monotone but not \mathcal{M}_1 -selective

 $W = \text{Reach}(a) \land \text{Reach}(b)$

 $\sqsubseteq_W \text{ is } \mathscr{M}_1 \text{-monotone}$ but not $\mathscr{M}_1 \text{-selective}$

$$\sqsubseteq_W$$
 is \mathscr{M}_2 -selective

 $W = \text{Reach}(a) \land \text{Reach}(b)$

 $W = \text{Reach}(a) \land \text{Reach}(b)$

 \rightarrow Memory \mathcal{M}_2 is sufficient for both players in all finite games $_{_{43}}$
Finite games

Finite games

 Complete characterization of winning objectives (and even preference relations) that ensure chromatic finite-memory determinacy for both players

Finite games

- Complete characterization of winning objectives (and even preference relations) that ensure chromatic finite-memory determinacy for both players
- One-to-two-player lifts (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)

Finite games

- Complete characterization of winning objectives (and even preference relations) that ensure chromatic finite-memory determinacy for both players
- One-to-two-player lifts (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)
- Further questions:
 - Can we reduce/optimize the memory?
 - What about chaotic finite memory?
 - Can we focus on one player (so-called half-positionality)?

Characterizing positional and chromatic finite-memory determinacy in infinite games

The case of mean-payoff

- Objective for P_1 : get non-negative (limsup) mean-payoff
- ► In finite games: **positional** strategies are sufficient to win
- ► In infinite games: **infinite memory** is required to win

• Let W be a prefix-independent objective.

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP'06).
[Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees (TCS 1998).

• Let W be a prefix-independent objective.

Characterization - Two-player games

The two following assertions are equivalent:

1. Positional optimal strategies are sufficient for W in all (infinite) games for both players;

2. *W* is a parity condition That is, there are $n \in \mathbb{N}$ and $\gamma : C \to \{0, 1, ..., n\}$ such that $W = \{c_1 c_2 \dots \in C^{\omega} \mid \limsup_i \gamma(c_i) \text{ is even}\}$

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP'06). [Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees (TCS 1998).

• Let W be a prefix-independent objective.

Limitations

47

Characterization - Two-player games

The two following assertions are equivalent:

1. Positional optimal strategies are sufficient for W in all (infinite) games for both players;

2. *W* is a parity condition That is, there are $n \in \mathbb{N}$ and $\gamma : C \to \{0,1,\ldots,n\}$ such that $W = \{c_1c_2... \in C^{\omega} \mid \limsup \gamma(c_i) \text{ is even}\}$

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP'06).
[Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees (TCS 1998).

• Let W be a prefix-independent objective.

Limitations

47

Characterization - Two-player games

The two following assertions are equivalent:

1. Positional optimal strategies are sufficient for W in all (infinite) games for both players;

2. *W* is a parity condition That is, there are $n \in \mathbb{N}$ and $\gamma : C \to \{0, 1, ..., n\}$ such that $W = \{c_1 c_2 \dots \in C^{\omega} \mid \limsup_i \gamma(c_i) \text{ is even}\}$

[CN06] Colcombet and Niwiński. On the positional determinacy of edge-labeled games (ICALP'06).
[Zie98] Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees (TCS 1998).

Some language theory (1)

• Let $L \subseteq C^*$ be a language of finite words

Right congruence

• Given $x, y \in C^*$, $x \sim_L y \Leftrightarrow \forall z \in C^*, (x \cdot z \in L \Leftrightarrow y \cdot z \in L)$

Some language theory (1)

• Let $L \subseteq C^*$ be a language of finite words

Right congruence

• Given $x, y \in C^*$, $x \sim_L y \Leftrightarrow \forall z \in C^*, (x \cdot z \in L \Leftrightarrow y \cdot z \in L)$

Myhill-Nerode Theorem

- L is regular if and only if \sim_L has finite index;
 - There is an automaton whose states are classes of \sim_L , which recognizes L.

Some language theory (2)

• Let $L \subseteq C^{\omega}$ be a language of infinite words

Right congruence

• Given $x, y \in C^*$, $x \sim_L y \Leftrightarrow \forall z \in C^{\omega}, (x \cdot z \in L \Leftrightarrow y \cdot z \in L)$

Some language theory (2)

• Let $L \subseteq C^{\omega}$ be a language of infinite words

Right congruence

• Given $x, y \in C^*$, $x \sim_L y \Leftrightarrow \forall z \in C^{\omega}, (x \cdot z \in L \Leftrightarrow y \cdot z \in L)$

Link with ω -regularity?

- If *L* is ω -regular, then \sim_L has finite index;
 - The automaton based on \sim_L is a so-called prefix-classifier;
- The converse does not hold (e.g. all prefix-independent languages are such that \sim_L has only one element).

Four examples

Objective	Prefix classifier \mathscr{M}_{\sim}	One-player memory
Parity objective	$\rightarrow \bigcirc \bigcirc C$	$\rightarrow \bigcirc \bigcirc C$
Mean-payoff ≥ 0	$\rightarrow \bigcirc \bigcirc C$	No finite automaton
$C = \{a, b\}$ $W = b^*ab^*aC^{\omega}$	$\xrightarrow{b} a \xrightarrow{b} a \xrightarrow{c} C$	\rightarrow C
$C = \{a, b\}$ $W = C^*(ab)^{\omega}$	$\rightarrow \bigcirc \bigcirc C$	b a b b 50

Characterization

• Let $W \subseteq C^{\omega}$ be a winning objective.

Characterization - Two-player games

If a finite memory structure \mathscr{M} suffices to play optimally in one-player infinite arenas for both players, then the prefix-classifier \mathscr{M}_{\sim} is finite and W is recognized by a parity automaton $(\mathscr{M}_{\sim} \otimes \mathscr{M}, \gamma)$, with $\gamma \colon M \times C \to \{0, 1, ..., n\}$.

 \rightarrow Generalizes [CN06] where both \mathcal{M} and \mathcal{M}_{\sim} are trivial

[CN06] Colcombet, Niwiński. On the positional determinacy of edge-labeled games (Theor. Comp. Science). [BRV22] Bouyer, Randour, Vandenhove. Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs (STACS'22).

Four examples

Objective	Prefix classifier \mathscr{M}_{\sim}	One-player memory
Parity objective	$\rightarrow \bigcirc \bigcirc C$	$\rightarrow \bigcirc C \mapsto \{0,1,\ldots,n\}$
Mean-payoff ≥ 0	$\rightarrow \bigcirc \bigcirc C$	No finite automaton
$C = \{a, b\}$ $W = b^*ab^*aC^{\omega}$	$\xrightarrow{b \ 1} \qquad b \ 1} \qquad $	$\rightarrow \bigcirc \bigcirc C$
$C = \{a, b\}$ $W = C^*(ab)^{\omega}$	$\rightarrow \bigcirc \bigcirc C$	$1 \ b \qquad \qquad$

Corollaries

Lifting theorem

If W and W^c are finite-memory-determined in one-player infinite games, then W and W^c are finite-memory-determined in two-player infinite games.

Corollaries

Lifting theorem

If W and W^c are finite-memory-determined in one-player infinite games, then W and W^c are finite-memory-determined in two-player infinite games.

Characterization

W is finite-memory-determined in (two-player) infinite games if and only if W is ω -regular.

Some consequences

- Mean-payoff ≥ 0 is not ω -regular (even though it is positionally determined in finite games)
- Some discounted objectives are ω -regular: e.g. condition $\mathsf{DS}_{\lambda}^{\geq 0}$ (with $\lambda \in (0,1) \cap \mathbb{Q}$, $C = [-k,k] \cap \mathbb{Z}$) is ω -regular if and only if $k < \frac{1}{\lambda} - 1$ or $\lambda = \frac{1}{n}$ for some $n \in \mathbb{N}_{>0}$

Infinite games

Infinite games

• Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games = ω -regular

Infinite games

- Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games = ω -regular
- One-to-two-player lift (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)

Infinite games

- Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games = ω -regular
- One-to-two-player lift (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)
- Further questions:
 - Can be reduce/optimize the memory? E.g. is \mathscr{M}_{\sim} necessary in the memory for two players?
 - What about chaotic finite memory?
 - Can we focus on one player (so-called half-positionality)?
 - What about finite branching?

Conclusion

• Use of models and **concepts from game theory** in formal methods (e.g. controller in reactive systems)

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use **low memory**!
 - ... even though low memory does not mean it is easy...

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use **low memory**!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use **low memory**!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives

- Games under **partial observation**, e.g. players with their own knowledge (of the game, of the other's choices, ...)
- Half-positionality or half-finite-memory of objectives (preliminary result [BCRV22])
- [BCRV22] Bouyer, Casares, Randour, Vandenhove. Half-Positional Objectives Recognized by Deterministic Büchi Automata (submitted).

