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• How to obtain dimension theory for families of sets?

• Why dimension theory: to obtain definability hierarchies
according to the dimension.

• First order operations should not increase the dimension
i.e. everything definable from something of dimension n
should have dimension at most n.

• So the dimension should come from what you add to first
order logic.

• You can add a generalized quantifier in order to make a
model class definable.

• We define dimension so that even generalized (Lindström)
quantifiers do not change it.

• As a results, we obtain very strong hierarchy results.
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The background

• Ciardelli defined in his Master’s Thesis [Cia09] a dimension concept,
in the case of downward closed families.

• Hella, Luosto, Sano and Virtema [HLSV14] introduced a similar
dimension concept in modal logic.

• Hella and Stumpf [HS15] used a form of dimension to prove a
succinctness result for the inclusion atom in modal inclusion logic.

• Lück and Vilander [LV19] generalized the notion of dimension from
downward closed families to arbitrary families in the context of
propositional logic.
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Other dimensions

• Matroid rank: Our families do not necessarily satisfy the
Exchange Axiom of matroids and therefore this concept
does not work in our context.

• Vapnik–Chervonenkis- or VC-dimension is not preserved
by logical operations in the sense that our dimension is.
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• A family of the form [A,B] = {C | A ⊆ C ⊆ B} is called
an interval.

• The family A is convex if for all S ,T ∈ A, we have
[S ,T ] ⊆ A.

• A family of set A is dominated (by
⋃
A) if

⋃
A ∈ A.
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Dimension

• Let A be a family of sets. We say that a subfamily G ⊆ A
dominates A if there exist dominated convex families AG ,
G ∈ G, such that

⋃
G∈G AG = A and

⋃
AG = G , for each

G ∈ G.

• The dimension of the family is A

D(A) = min{|G| | G dominates the family A},
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• We consider operators: ∆: P(P(X ))n → P(P(Y )).

• The union operator ∆X
∪ : P(P(X ))2 → P(P(X )) is

defined by ∆X
∪ (A,B) = A ∪ B.

• The intersection operator ∆X
∩ : P(P(X ))2 → P(P(X )) is

defined by ∆X
∩ (A,B) = A ∩ B.

• Complementation is the unary operator
∆X

c : P(P(X ))→ P(P(X )) defined by
∆X

c (A) = P(X ) \ A.

• The idea of tensor disjunction ∆X
∨ and tensor conjunction

∆X
∧ is to take unions and intersections inside the families:

∆X
∨ (A,B) = {A ∪ B | A ∈ A,B ∈ B} and

∆X
∧ (A,B) = {A ∩ B | A ∈ A,B ∈ B}.
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• Pushing complementation inside a given family, we obtain
tensor negation: ∆X

¬ (A) = {X \ A | A ∈ A}.
• Let f : X → Y be a surjective function. The (abstract)

projection operator corresponding to f is obtained by
lifting f to a function ∆f : P(P(X ))→ P(P(Y )) in the
usual way: ∆f (A) = {f [A] | A ∈ A}, where f [A] denotes
the image {f (a) | a ∈ A} of A under f .

• Given a surjection f : X → Y , we can also define a useful
operator ∆f −1 : P(P(Y ))→ P(P(X )) as follows:
∆f −1(B) = {A ∈ P(X ) | f [A] ∈ B}.
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• Consider the concrete projection function f : X → Y for
X = X0 × · · · × Xm−1 and
Y = X0 × · · ·Xi−1 × Xi+1 × · · · × Xm−1 defined by
f (a0, . . . , am−1) = (a0, . . . , ai−1, ai+1, . . . , am−1) (i.e., f is
the projection to coordinates j 6= i).

• Thus, ∆f corresponds to the logical operation of
existential quantification, and accordingly we denote it by
∆X
∃i .

• Similarly, we define an operator
∆X
∀i : P(P(X ))→ P(P(Y )) that corresponds to universal

quantification: Given a set B ∈ P(Y ), let
B[Xi/i ] = {(a0, . . . , am−1) ∈ X |
(a0, . . . , ai−1, ai+1, . . . , am−1) ∈ B , ai ∈ Xi}. Then we let
∆X
∀i(A) = {B ∈ P(Y ) | B[Xi/i ] ∈ A}.
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Note that the union and intersection operators ∆X
∪ and ∆X

∩ do
not depend on the base set X . Thus, in the sequel we will
denote these operators simply by ∪ and ∩. The same holds for
tensor disjunction and conjunction, whence we will use the
notation A ∨ B := ∆X

∨ (A,B) and A ∧ B := ∆X
∧ (A,B).
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Families arising from logic

Classical logic:

‖φ‖M = {(a0, . . . , am−1) ∈ Mm | M |= φ(a0, . . . , am−1)}.

For every formula φ, with free variables in ~x = (x0, . . . , xm−1),
of a logic based on team semantics (i.e. for which M |=T φ is
defined for teams, sets of assignments, T ⊆ Mk) we have the
set of teams

‖φ‖M,~x = {T ⊆ Mm | M |=T φ}.

11 / 68



Introduction Basic Examples/growth classes Operators Applications Other

The atomic level

Suppose T is a team i.e. a set of assignments s in a model M
for the relevant variables.

• Dependence atom: M |=T =(~x , y) if and only if
s(~x) = s ′(~x) implies s(y) = s ′(y) for all s, s ′ ∈ T .

• We allow len(~x) = 0 and call =(y) the constancy atom.
More generally, M |=T =(~y) if and only if s(~y) = s ′(~y) for
all s, s ′ ∈ T .

• Exclusion atom: M |=T ~x | ~y if and only if for every
s, s ′ ∈ T we have s(~x) 6= s ′(~y).

12 / 68



Introduction Basic Examples/growth classes Operators Applications Other

• Inclusion atom: M |=T ~x ⊆ ~y if and only if for every
s ∈ T there is s ′ ∈ T such that s(~x) = s ′(~y).

• Anonymity atom: M |=T ~x Υ y if and only if for every
s ∈ T there is s ′ ∈ T such that s(~x) = s ′(~x) and
s(y) 6= s ′(y).

• Independence atom: M |=T ~x ⊥~z ~y if and only if for
every s, s ′ ∈ T such that s(~z) = s ′(~z) there is s ′′ ∈ T
such that s ′′(~z) = s(~z), s ′′(~x) = s(~x) and s ′′(~y) = s ′(~y).
The atom ~x ⊥ ~y , corresponding to the case ~z is empty, is
called the pure independence atom, while ~x ⊥~z ~y is
otherwise called the conditional independence atom.
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• If φ is a dependence atom or an exclusion atom, then
‖φ‖M,~x is downward closed but not necessarily closed
under unions or dominated.

• If φ is an inclusion atom or an anonymity atom, then
‖φ‖M,~x is closed under unions and dominated by M len(~x)

but not necessarily downward closed.
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We recall the inductive definition of M |=T φ for composite φ
from [Vää07].

• If a ∈ M , then s(a/x) is the unique assignment s ′ such
that s ′(x) = a and s ′(y) = s(y) for variables y in the
domain of s other than x .

• If F : T → P(M) \ {∅}, then

T [F/x ] = {s(a/x) | s ∈ T , a ∈ F (s)}

T [M/x ] = {s(a/x) | a ∈ M , s ∈ T}.
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Logical operations

Definition

(a) M |=T φ, where φ is (first order) atomic or negated
atomic if and only if every assignment s in T satisfies φ.

(b) M |=T φ ∧ ψ if and only if M |=T φ and M |=T ψ.

(c) M |=T φ∨ ψ if and only if T = U ∪ V such that M |=U φ
and M |=V ψ. (Tensor disjunction)

(d) M |=T ∃xφ if and only if there is F : T → P(M) \ {∅}
such that M |=T [F/x] φ.

(e) M |=T ∀xφ if and only if M |=T [M/x] φ.
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New atom New logic (∨,∧,∀,∃)

=(x , y) Dependence logic = ↓-closed
x |y Exclusion logic NP
xΥy Anonymity logic = P
x ⊆ y Inclusion logic on o. f.
x ⊥ y Independence logic= NP
x ⊥z y Cond. indep. logic
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For every (classical) first order formula φ we have

‖φ‖M,~x = [∅,Tφ] = P(Tφ),

where Tφ = (‖φ‖M =){~a ∈ Mm | M |= φ(~a)}. Thus for first

order φ the family ‖φ‖M,~x is dominated (by Tφ), downward
closed, and convex.
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Operators at work

‖φ ∧ ψ‖M,~x = ‖φ‖M,~x ∩ ‖ψ‖M,~x

‖φ ∨ ψ‖M,~x = ‖φ‖M,~x ∨ ‖ψ‖M,~x

‖∃xiφ‖M,~x− = ∆Mm

∃i (‖φ‖M,~x)

‖∀xiφ‖M,~x− = ∆Mm

∀i (‖φ‖M,~x),

where ~x− is the tuple obtained from ~x by deleting the
component xi .
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Towards combinatorics of the atoms

For non-empty finite sets X and Y , here is a list of families
that we consider:

F = {f ⊆ X × Y | f is a mapping },
X = {R ⊆ X × X | dom(R) ∩ rg(R) = ∅}
I⊆ = {R ⊆ X × X | dom(R) ⊆ rg(R)},
Y = {R ⊆ X × Y | R is anonymous},
I⊥ = {A× B | A ⊆ X , B ⊆ Y },

where we call a relation R ⊆ X × Y anonymous if for all
x ∈ dom(R) there exist distinct y , y ′ ∈ Y with
(x , y), (x , y ′) ∈ R .
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Dimension computations

Theorem
Let X and Y be finite sets with ` = |X | ≥ 2 and n = |Y | ≥ 2.
Then:

D(F) = n`

D(X ) = 2` − 2
D(I⊆) = 2` − `
D(Y) = 2`

D(I⊥) = (2` − `− 1)(2n − n − 1) + ` + n
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Accordingly...

x = y 1

=(~y) nm len(~y) = m

~x ⊆ ~y 2nm − nm len(~x) = len(~y) = m

~x | ~y 2nm − 2 len(~x) = len(~y) = m

~x Υ y 2nm len(~x) = m

~x ⊥ ~y ≈ 2nm+nk len(~x) = m, len(~y) = k

=(~x , y) nn
m

len(~x) = m

~x ⊥~u ~y ≈ [2nm+nk , 2nm+s+nk+s

] len(~x) = m, len(~y) = k, len(~u) = s

Table: Dimensions of atoms.
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Definition
A set O of mappings f : N→ N is a growth class if the
following conditions hold for all f , g : N→ N:

(a) If g ∈ O and f ≤ g , then f ∈ O.

(b) If f , g ∈ O, then f + g ∈ O and fg ∈ O.
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• We are interested in the following particular classes: For
k ∈ N, the class Ek consist all f : N→ N such that there
exists a polynomial p : N→ N of degree k and with
coefficients in N such that f (n) ≤ 2p(n).

• Fk is the class of functions f : N→ N such that there
exists a polynomial p : N→ N of degree k and with
coefficients in N such that f (n) ≤ np(n).
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Note that E0 is the class of bounded functions and F0 the class
of functions of polynomial growth. The following is immediate:

Theorem
Each Ek and Fk (for k ∈ N) is a growth class. Furthermore,
we have that

E0 ( F0 ( E1 ( F1 ( · · · ( Ek ( Fk ·
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Definition
To each formula φ with free variables in ~x allowing a
team-semantical interpretation we relate the following
dimension function Dimφ,~x : N→ Card:

Dimφ,~x(n) = sup
{

D(‖φ‖M,~x) | M is a model, |M | = n
}
.
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1. Dimφ,~x(n) = 1, hence Dimφ,~x is in E0, for every first order φ.

2. Dim=(~x,y),~xy (n) = nn
k

, hence Dim=(~x,y),~xy is in Fk , where len(~x) = k.

3. Dim~x|~y ,~x~y (n) = 2nk − 2, hence Dim~x|~y ,~x~y is in Ek , where
len(~x) = len(~y) = k .

4. Dim~x⊆~y ,~x~y (n) = 2nk − nk , hence Dim~x⊆~y ,~x~y is in Ek , where
len(~x) = len(~y) = k .

5. Dim~xΥy ,~xy (n) = 2nk , hence Dim~xΥy ,~xy ∈ Ek , where len(~x) = k.

6. Dim~x⊥~z~y ,~x~z~y (n) ∈ [r , rn
s

], where

r = (2nm − nm − 1)(2nk − nk − 1) + nm + nk , hence Dim~x⊥~z~y ,~x~z~y is
in Em+k+s , where len(~x) = k , len(~y) = m, and len(~z) = s.
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family X Y Z formula φ Dimα

F Mk M =(~x , t) Fk

X Mk Mk ~x | ~y Ek

I⊆ Mk Mk ~x ⊆ ~y Ek

Y Mk M l ~x Υ y Ek

I⊥ Mk M l ~x ⊥ ~z Ek+l

I⊥· Mk M l Ms ~x ⊥~z ~y Em+k+s
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Dimension under various operators

Let X and Y be nonempty base sets, and let
R ⊆ P(Y )× P(X )n be an (n + 1)-ary relation. Then we
define a operator ∆R : P(P(X ))n → P(P(Y )) by the
condition

B ∈ ∆R(A0, . . . ,An−1) ⇐⇒
∃A0 ∈ A0 . . . ∃An−1 ∈ An−1 : (B ,A0, . . . ,An−1) ∈ R.

Definition ([Lüc20])

Let X and Y be nonempty sets. A function
∆: P(P(X ))n → P(P(Y )) is a Kripke-operator, if there is a
relation R ⊆ P(Y )× P(X )n such that ∆ = ∆R.
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• Intersection of families is a Kripke-operator: If
A,B ⊆ P(X ) and C ∈ P(X ), then C ∈ A∩B if and only
if there exist A ∈ A and B ∈ B such that (C ,A,B) ∈ R∩,
where R∩ is the relation {(D,D,D) | D ∈ P(X )}.
• Union of families on X is not a Kripke-operator.

• Complementation ∆X
c is not a Kripke-operator
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• Tensor disjunction and negation on X are
Kripke-operators: clearly A ∨ B = ∆R∨(A,B) and
∆X
¬ (A) = ∆R¬(A) where
R∨ = {(A ∪ B ,A,B) | A,B ∈ P(X )} and
R¬ = {(X \ A,A) | A ∈ P(X )}.
• Projections and inverse projections are Kripke-operators.

Indeed, if f : X → Y is a surjection, then clearly
∆f = ∆Rf

, where Rf = {(f [A],A) | A ∈ P(X )}.
Similarly, ∆f −1 = ∆Rf−1 , where
Rf −1 = {(A, f [A]) | A ∈ P(X )}.
• The existential quantification operators ∆Mm

∃i and the
universal quantification operators ∆Mm

∀i are
Kripke-operators.
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Definition
Let ∆: P(P(X ))n → P(P(Y )) be an operator. We say that
∆ weakly preserves dominated convexity if ∆(A0, . . . ,An−1) is
dominated and convex or ∆(A0, . . . ,An−1) = ∅ whenever Ai

is dominated and convex for each i < n.

Theorem
Let ∆R : P(P(X ))n → P(P(Y )) be a Kripke-operator, and
let A = ∆(A0, . . . ,An−1). If ∆ weakly preserves dominated
convexity then D(A) ≤ D(A0) · . . . · D(An−1).
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Below we will use the notation

R[A] := {(A0, . . . ,An−1) | (A,A0, . . . ,An−1) ∈ R}.

Definition ([Lüc20])

A Kripke-operator ∆R : P(P(X ))n → P(P(Y )) is local if, for
any A ∈ P(Y ), R[A] is determined by the relations R[{a}],
a ∈ A, as follows:

(A0, . . . ,An−1) ∈ R[A] ⇐⇒ for each a ∈ A there is
(Aa

0, . . . ,A
a
n−1) ∈ R[{a}] such that Ai =

⋃
a∈A A

a
i for

i < n.

Theorem
If ∆R : P(P(X ))n → P(P(Y )) is a local Kripke-operator for
finite X and Y , then it weakly preserves dominated convexity.
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Definition
A Kripke-operator ∆R : P(P(X ))n → P(P(Y )) is separating
if Ai ∩ Bi = ∅ for all i < n whenever (A0, . . . ,An−1) ∈ R[{a}],
(B0, . . . ,Bn−1) ∈ R[{b}] and a 6= b.

Theorem
The operators ∆Mm

∩ , ∆Mm

∨ and ∆Mm

K,~̀ are local and separating.

Hence they preserve dimension!
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Corollary

Let O be a growth class. Furthermore, let φ = φ(~x) and
ψ = ψ(~x) be formulas of some logic L with team semantics.

(a) If Dimφ,~x ,Dimψ,~x ∈ O, then Dimφ∧ψ,~x ∈ O.

(b) If Dimφ,~x ,Dimψ,~x ∈ O, then Dimφ∨ψ,~x ∈ O.

(c) If Dimφ,~x ∈ O, then Dim∃xiφ,~x− ∈ O and Dim∀xiφ,~x− ∈ O,
where ~x− is ~x without the component xi .

(d) If QK is a Lindström quantifier, ~x = ~z ⊗~̀ ~y and
Dimφ,~x ∈ O, then DimQK~y φ,~z ∈ O.
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Definition
The logic LEk is the closure of literals and all atoms whose
dimension function is in the growth class Ek under the
connectives ∧, ∨ and any Lindström quantifiers. Similarly LFk

for Fk .

Lemma

(a) LEk ⊆ LFk ⊆ LEk+1 ⊆ LFk+1.
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The arity-concept

Definition

• The atom =(~x , y) is k-ary, if len(~x) = k ,

• The atoms ~x | ~y and ~x Υ y are k-ary if
len(~x)(= len(~y)) = k ,

• The atom ~t2 ⊥~t1
~t3 is m + max(k , l)-ary, or alternatively

(k , l ,m)-ary, if len(~t1) = m, len(~t2) = k , and len(~t3) = l .

• The atom ~t2 ⊥ ~t3 is max(k , l)-ary, or alternatively
(k , l)-ary, if len(~t2) = k , and len(~t3) = l .
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Theorem

1. k-ary inclusion, anonymity, exclusion and independence
logics are all included in LEk .

2. The k-ary dependence logic is included in LFk .

3. The (k , l ,m)-ary independence logic is included in
LFmax(k,l)+m.
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Theorem

(a) The dimension of every formula in LEk is in the growth
class Ek .

(b) The dimension of every formula in LFk is in the growth
class Fk .

Theorem

1. The k + 1-ary inclusion, anonymity, exclusion and
independence atoms are not definable in LEk .

2. The k + 1-ary dependence atom is not definable in LFk .

3. The (k , l ,m)-ary independence atom is not definable in
LFi if i < max(k , l) + m.
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For comparison ([Gal12]):

(a) The k-ary dependence atom is definable from the k + 1-ary
exclusion atom and also in terms of the k + 1-ary pure
independence atom, and in the other direction, the k-ary exclusion
atom is definable from the k-ary dependence atom.

(b) The k-ary exclusion atom can be defined in terms of the k-ary
inclusion and the k-ary pure independence atoms.

(c) The k-ary inclusion atom can be defined from the (k,2)-ary pure
independence atom.

(d) The k-ary anonymity atom is definable in terms of the k + 1-ary
inclusion atom.

(e) The (k , l ,m)-ary independence atom is definable in terms of the
k + l + m-ary dependence atom, k + l-ary, k + m-ary exclusion
atoms, and the k + l + m-ary inclusion atom.

(f) The (k , l ,m)-ary independence atom is definable in terms of the
pure (k + m, l + m)-ary independence atom (Wilke).
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Corollary (Hierarchy Theorem)

Dependence logic, exclusion logic, inclusion logic, anonymity
logic and pure independence logic each has a proper
definability hierarchy for formulas based on the arity of the
non-first order atoms.
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• The k-ary dependence atom is not definable in the extension of first
order logic by < k-ary dependence (or any other < k-ary) atoms, ≤ k-ary
independence, exclusion, inclusion, anonymity, constancy atoms, and any
Lindström quantifiers.
• The k-ary exclusion atom is not definable in the extension of first order
logic by < k-ary exclusion, inclusion, anonymity, dependence,
independence, constancy (or any other < k-ary) atoms, and any
Lindström quantifiers.
• The k-ary inclusion atom is not definable in the extension of first order
logic by < k-ary inclusion, exclusion, anonymity, dependence, or
constancy (or any other < k-ary) atoms, and any Lindström quantifiers.
• The k-ary anonymity atom is not definable in the extension of first
order logic by < k-ary inclusion, anonymity, exclusion, dependence,
constancy (or any other < k-ary) atoms, and any Lindström quantifiers.
• The k-ary independence atom (whether pure or not) is not definable in
the extension of first order logic by < k-ary independence, inclusion,
anonymity, exclusion, dependence, constancy (or any other < k-ary)
atoms, and any Lindström quantifiers.
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Many open problems:

1. Is the k-ary dependence atom definable in the extension
of first order logic by k-ary independence, exclusion,
inclusion, anonymity, constancy atoms, and some
Lindström quantifiers?

2. Is the k-ary anonymity atom definable in terms of the
k-ary inclusion atom?

3. Is the (k , l ,m)-ary independence atom definable in terms
of the max(k , l) + m-ary dependence atom,
max(k , l) + m-ary, max(k , l) + m-ary exclusion atoms,
and the max(k , l) + m-ary inclusion atom?
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• Earlier hierarchy results have been for sentences.

• In [DK12] it is shown that k-ary dependence atom is
weaker than k + 1-ary dependence atom for sentences in
vocabulary having arity k + 1.

• In [Han18] it is shown (using similar results of Grohe on
transitive closure and fixpoint operator) that inclusion
logic with k − 1-ary inclusion atoms is strictly weaker than
inclusion logic with k-ary inclusion atoms for sentences
when k ≥ 2.

• In [GHK13] it is shown that independence logic with k-ary
independence atoms is strictly weaker than independence
logic with k + 1-ary independence atoms on the level of
sentences.

• See also [Rön16] for similar hierarchy results.
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Other logical operations

The atoms and logical operations ∧, ∨, ∀, and ∃ are by no
means the only ones that can be or have been considered.

Definition (Intuitionistic implication)

The intuitionistic implication φ→ ψ is defined by
M |=T φ→ ψ if and only if every Y ⊆ T that satisfies in M
the formula φ satisfies also the formula ψ.
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As the following lemma demonstrates, the dependence atom
can be defined in terms of the constancy atoms and the
intuitionistic implication:

Lemma ([AV09])

|= =(x1, . . . , xn, y) ≡ (=(x1) ∧ . . .∧ =(xn)) → =(y)

This gives an example where the use of φ→ ψ leads to
something we know is exponential. It shows that we cannot
hope to prove that the dimensions of φ→ ψ is in general
better than exponential in the dimensions of φ and ψ.
We can add intuitionistic implication to F0, because it does
not increase dimension, when the latter is 1.
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Definition (Intuitionistic disjunction)

M |=T φ ∨ ψ if and only if M |=T φ or M |=T ψ.

Note:
‖φ ∨ ψ‖M,~x = ‖φ‖M,~x ∪ ‖ψ‖M,~x .

Intuitionistic disjunction can be defined in terms of constancy
atoms:

|= φ ∨ ψ ⇐⇒ ∃x∃y(=(x)∧ =(y)∧((x = y∧φ)∨(¬x = y∧ψ))).

But since it increases dimension additively, it cannot be
defined in first order logic alone. In fact, the formula
x = y ∨ ¬x = y has dimension 2.
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Definition

• If a ∈ M , let Fa be the constant function Fa(s) = a for all
s ∈ T .

• The ∃1-quantifier is defined as follows: M |=T ∃1xφ if for
some a ∈ M we have M |=T [Fa/x] φ.

• The ∀1-quantifier is defined as follows: M |=T ∀1xφ if for
all a ∈ M we have M |=T [Fa/x] φ.

• The public announcement-quantifier ([Gal12]) δ1x is
defined as follows: M |=T δ1xφ if for all a ∈ M we have
M |=Ta φ, where Ta = {s ∈ T : s(x) = a}.
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Lemma ([Gal12])

(a) |= ∀1xφ(x) ⇐⇒ ∀x(=(x)→ φ(x))

(b) |= δ1xφ(x) ⇐⇒ ∀1y(x 6= y ∨ φ(x))

(c) |= ∀1xφ(x) ⇐⇒ ∀xδ1xφ(x)

(d) |= =(x1, ..., xn, y) ⇐⇒ δ1x1...δ
1xn =(y)
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• This shows that we cannot hope to prove that they are in
general better than exponential.

• This also shows that these operators do not arise from a
Lindström quantifier.

• Note that by iterating ∀1x or δ1x we can defined
dependence atoms of arbitrary arity.

• This shows that ∀1x and δ1x increase dimension more
than any k-ary atom for a fixed k .
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Lemma

• |= ∃1xφ ⇐⇒ ∃x(=(x) ∧ φ).

• |= =(x) ⇐⇒ ∃1y(x = y).

• ∃1 increases dimension at most linearly.

• ∃1 does indeed increase dimension, as the dimension of
x = y is 1 and the dimension of =(x) is n.
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Definition ([Gal12])

A generalized quantifier (which need not be a Lindström
quantifier) Q of a logic L1 is said to be uniformly definable in
another logic L2 if the logic L2 has a sentence Φ(P), P unary,
with only positive occurrences of P , such that for all formulas
φ(x , y) of the logic L1 we have

|= Qxφ(x , y) ⇐⇒ Φ(φ(z , y)/P(z)).

Similarly, if there are several formulas, as in Qxyφ(x , z)ψ(y , z).

In first order logic definability is always uniform.
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Example

The quantifier ∃1 is uniformly definable in dependence logic:

|= ∃1xφ(x , y) ⇐⇒ ∃x(=(x) ∧ φ(x , y))

.
The intuitionistic disjunction is uniformly definable in
dependence logic:

|= φ ∨ ψ ⇐⇒ ∃x∃y(=(x)∧ =(y)∧((x = y∧φ)∨(¬x = y∧ψ))).
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Lemma
Suppose |= Qxφ(x , y) ⇐⇒ Φ(φ(z , y)/P(z)) where Φ(P) is a
sentence in dependence logic. Then

DimQxφ(x ,y),xy (n) ≤ (nn
m · Dimφ(x ,y)(n))k ,

where k is the length of Φ(P) and m is the maximum of the
lengths of ~x such that =(~x , y) for some y occurs in Φ(P).

Corollary ([Gal12])

The quantifier ∀1 is not uniformly definable in dependence
logic.
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Summary

• With our dimension concept one can prove hierarchy
results for formulas, not just sentences.

• Dimension reveals subtle qualitative differences between
logical operations (cf. ∀1,→,∨).

• Our method is very general, applies to arbitrary families of
sets in a finite domain.
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Thank you!
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• Raine Rönnholm. The expressive power of k-ary exclusion logic. In Logic,
language, information, and computation, volume 9803 of Lecture Notes in
Comput. Sci., pages 375–391. Springer, Berlin, 2016.

• Jouko Väänänen. Dependence logic, volume 70 of London Mathematical
Society Student Texts. Cambridge University Press, Cambridge, 2007. A new
approach to independence friendly logic.

• Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag,
New York, 1995.

• Karl Weber. The length of random Boolean functions. Elektron.
Informationsverarb. Kybernet., 18(12):659–668, 1982.

63 / 68



Introduction Basic Examples/growth classes Operators Applications Other

L. A. Aslanyan.
Length of the shortest disjunctive normal form of weakly defined Boolean
functions.
In Applied mathematics, No. 2, pages 32–40, 141–142. Erevan. Univ., Erevan,
1983.

Samson Abramsky and Jouko Väänänen.
From IF to BI: a tale of dependence and separation.
Synthese, 167(2, Knowledge, Rationality & Action):207–230, 2009.

Ivano Ciardelli.
Inquisitive semantics and intermediate logics.
Master’s thesis, University of Amsterdam, 2009.

Arnaud Durand and Juha Kontinen.
Hierarchies in dependence logic.
ACM Trans. Comput. Log., 13(4):Art. 31, 21, 2012.

Pietro Galliani.
Inclusion and exclusion dependencies in team semantics—on some logics of
imperfect information.
Ann. Pure Appl. Logic, 163(1):68–84, 2012.

Pietro Galliani, Miika Hannula, and Juha Kontinen.
Hierarchies in independence logic.

64 / 68



Introduction Basic Examples/growth classes Operators Applications Other

In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL
2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages
263–280. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013.

V. V. Glagolev.
An estimate of the complexity of the contracted normal form for almost all
functions of the logic of algebra.
Dokl. Akad. Nauk SSSR, 158:770–773, 1964.

Miika Hannula.
Hierarchies in inclusion logic with lax semantics.
ACM Trans. Comput. Log., 19(3):16:1–16:23, 2018.

Lauri Hella, Kerkko Luosto, Katsuhiko Sano, and Jonni Virtema.
The expressive power of modal dependence logic.
In Advances in modal logic. Vol. 10, pages 294–312. Coll. Publ., London, 2014.

Lauri Hella and Johanna Stumpf.
The expressive power of modal logic with inclusion atoms.
In Proceedings Sixth International Symposium on Games, Automata, Logics and
Formal Verification, volume 193 of Electron. Proc. Theor. Comput. Sci.
(EPTCS), pages 129–143. EPTCS, [place of publication not identified], 2015.

A. D. Kořsunov.
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